

L. Wang and Y. Jin (Eds.): FSKD 2005, LNAI 3614, pp. 551 – 560, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Direct Candidates Generation: A Novel Algorithm for
Discovering Complete Share-Frequent Itemsets

Yu-Chiang Li1, Jieh-Shan Yeh2, and Chin-Chen Chang1, 3

1 Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi 621 Taiwan

{lyc, ccc}@cs.ccu.edu.tw
2 Department of Computer Science and Information Management,

Providence University, Taichung 433, Taiwan
jsyeh@pu.edu.tw

3 Department of Information Engineering and Computer Science,
Feng Chia University, Taichung 407, Taiwan

Abstract. The value of the itemset share is one way of evaluating the magnitude
of an itemset. From business perspective, itemset share values reflect more the
significance of itemsets for mining association rules in a database. The
Share-counted FSM (ShFSM) algorithm is one of the best algorithms which can
discover all share-frequent itemsets efficiently. However, ShFSM wastes the
computation time on the join and the prune steps of candidate generation in each
pass, and generates too many useless candidates. Therefore, this study proposes
the Direct Candidates Generation (DCG) algorithm to directly generate
candidates without the prune and the join steps in each pass. Moreover, the
number of candidates generated by DCG is less than that by ShFSM.
Experimental results reveal that the proposed method performs significantly
better than ShFSM.

1 Introduction

Data mining techniques have been developed to find new and potentially useful
knowledge from data. [11]. Traditional methods for mining association rules are
based on the support-confidence framework to discover all relationships among items
(each market product is called an item) from historical transaction databases.

The support value is applied to measure the importance of itemsets (a group of
products bought together in a transaction) in a transaction database. It only reflects the
percentage of transactions in which the itemset sold, but neither reveals the profit, the
cost nor the real quantity sold of each itemset. For example, in Table 1, the column
“Count” indicates the sale volume of each item in each transaction. According to the
support value, {A} appears in four transactions, but its real sale volume is 12.

Users are usually more interested in knowing which itemsets are bought in sufficient
numbers to gain a certain net profit or attain a given cost. To reveal such knowledge,
several issues have been proposed, such as share-confidence framework, profit mining
and utility itemsets [7, 8, 16]. In 1997, Carter et al. first introduced a share-confidence
framework [7]. Instead of discovering frequent itemsets, the method with

552 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

share-confidence framework finds share-frequent (SH-frequent) itemsets. The share
measure can provide valuable information of itemsets’ net profit or cost, which the
support measure cannot [6].

Table 1. Example of a transaction database with counting

TID Transaction Count Total count
T01 {A, B, C, D, G, H} {1, 1, 1, 1, 1, 1} 6
T02 {A, C, E, F} {4, 3, 1, 2} 10
T03 {A, C, E} {4, 3, 3} 10
T04 {B, C, D, F} {4, 1, 2, 2} 9
T05 {A, B, D} {3, 1, 2} 6
T06 {B, C, D} {3, 2, 1} 6

An SH-frequent itemset usually includes some infrequent subsets even no frequent
subset. Obviously, an exhaustive search method can be used to generate all
SH-frequents, such as the ZP and the ZSP algorithms [4, 6]. However, the exhaustive
search method is time-consuming and does not work efficiently in a large dataset. Some
algorithms have been proposed to facilitate the extraction of SH-frequents with
infrequent subsets, such as SIP, CAC and IAB [4, 5, 6], but they may not discover all
SH-frequent itemsets. Recently, Li et al. first developed algorithms to swiftly discover
all SH-frequent itemsets [12, 13]. Among these algorithms ShFSM is the best. In
contrast to the number of SH-frequent itemsets, the performance bottleneck of ShFSM
is generating too many candidates in each pass. Accordingly, this work proposes the
Direct Candidate Generation (DCG) method to further improve the performance of
ShFSM. Our scheme directly generates candidates in each pass without the join and the
prune steps. Furthermore, DCG can efficiently lower the number of useless candidates
and further accelerate the mining process. For simplicity and without loss of generality,
this study supposes that the measure value of each item in each transaction is a
non-negative integer.

The rest of this paper is organized as follows. Section 2 reviews support-confidence
and share-confidence frameworks. Section 3 explains the proposed Direct Candidate
Generation (DCG) algorithm for discovering all SH-frequent itemsets. Section 4
provides experimental results and evaluates the performance of the proposed algorithm.
Finally, we conclude in Section 5 with a summary of our work.

2 Review of Support and Share Measures

2.1 Support-Confidence Framework

Agrawal et al. first defined the problem of mining association rules [2, 3]. The formal
definition is as follows. Let I = {i1, i2, …, in} be a set of literals with binary attributes,
called items. Let X be an itemset, where X ⊆ I. Let the transaction database DB = {T1,
T2, ..., Tz} be the set of transactions, where each transaction Tq∈DB, Tq ⊆ I, 1 ≤ q ≤ z.

The notation X⇒ Y presents an association rule, where X ⊆ I, Y ⊆ I and XIY = φ .

The rule X⇒ Y has support s%, denoted as Sup(XU Y), in the transaction database DB

 A Novel Algorithm for Discovering Complete Share-Frequent Itemsets 553

if the itemset XU Y appears in s% of transactions in DB. The confidence of the rule
X⇒Y, denoted as Conf(X⇒ Y), is c% if the set of transactions containing X in DB
has c% transactions also containing Y. Thus, Conf(X⇒ Y) = Sup(XU Y)/Sup(X).
Given the minimum support (minSup) and minimum confidence (minConf) threholds,
the process of mining association rules is to generate all rules that satisfy the two
certain constraints, respectively.

Apriori is a level-wise (including multiple passes) algorithm. In each pass, Apriori
employs the downward closure property to efficiently identify all frequent k-itemsets
(itemsets with length k and their supports are greater than or equal to minSup). In fact,
an arbitrary k-subset of a frequent (k+1)-itemset is also frequent; otherwise, the
(k+1)-itemset is infrequent. This characteristic is called the downward closure property.
That is, the itemsets violating the downward closure property will be deleted from the
set of candidate (k+1)-itemsets. Up to now, there are many algorithms have been
proposed to rapidly discover the frequent itemsets, including Apriori and subsequent
Apriori-like algorithms [3, 15], and pattern-growth methods [1, 9, 14].

2.2 Share-Confidence Framework

The support measure does not concern the quantity purchased in a transaction. In real
circumstances, products may be bought in plural in a transaction. Therefore, the
support value of an item usually underestimates the actual frequency of product
purchasing. Information derived from the support value may also be misleading [6].
To address this issue, Carter et al. first introduced the share-confidence framework
[7]. Instead of a binary attribute, each item ip involves a numerical attribute in each
transaction Tq. The notations and definitions of share measure are described as follows
[6, 12, 13].

The measure value mv(ip, Tq) represents the attribute value of ip in transaction Tq. For
example, in Table 1, mv(C, T02) = 3 and mv(D, T04) = 2. The transaction measure
value is the total measure value of a transaction Tp, denoted as tmv(Tp), where tmv(Tp) =

∑
∈ qp Ti

qp Timv),(. For example, in Table 1, tmv(T02) = 10 and mv(T04) = 9.

The total measure value Tmv(DB) represents the total measure value in DB, where
Tmv(DB) = ∑ ∑

∈ ∈DBT Ti
qp

q qp

Timv),(. For example, in Table 1, Tmv(DB) = 47.

Let dbX be a set of transactions that contain itemset X in DB. That is each k-itemset
X ⊆ I has an associated set of transactions dbX ⊆ DB, where X ⊆ Tq and Tq∈dbX. For
example, in Table 1, db{AC} = {T01, T02, T03}.

Let X ⊆ Tq, the itemset measure value of an itemset X in a transaction Tq, denoted as
imv(X, Tq), is the total measure value of all items of X in Tq. That is, imv(X, Tq) =

∑
∈⊆ XiTX

qp
pq

Timv
,

),(. For example, in Table 1, imv({AC}, T02) = 7.

The local measure value of an itemset X in DB, denoted as lmv(X), is the sum of the
itemset measure values of X in dbx. That is, lmv(X) = ∑

∈ xq dbT
qTXimv),(. For example, in

Table 1, lmv({AC}) = imv{{AC}, T01} + imv{{AC}, T02} + imv{{AC}, T03} = 2 + 7 +
7 = 16.

554 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

The itemset share value of an itemset X, denoted as SH(X), is the ratio of the local
measure value of X to the total measure value in DB. That is, SH(X) =

)(

)(

DBTmv

Xlmv . Given

a minimum share (minShare) threshold s%, A k-itemset X is share-frequent
(SH-frequent) if SH(X) ≥ s%; otherwise, X is infrequent.

Example 2.1 Consider the sample transaction database as shown in Table 1 and
minShare = 30%. Table 2 lists the local measure value and the share value of each
1-itemset, where Tmv(DB) = 47. Let X = {B, D}, the local measure value of {B, D} is
lmv(X) = imv(X, T01) + imv(X, T04) + imv(X, T05) + imv(X, T06) = 2 + 6 + 3 + 4 =
15. SH(X) = lmv(X)/Tmv(DB)= 15/47 = 0.319 > 30%. Therefore, {B, D} is
SH-frequent. Table 3 illustrates all SH-frequent itemsets.

Table 2. Local measure value and itemset share value of each 1-itemset

Item {A} {B} {C} {D} {E} {F} {G} {H} Total
lmv(ip) 12 9 10 6 4 4 1 1 47
SH(ip) 25.5% 19.1% 21.3% 12.8% 8.5% 8.5% 2.1% 2.1% 100%

Table 3. All SH-frequent itemsets of the sample database

SH-frequent itemset {A, C} {B, D} {A, C, E} {B, C, D}
lmv(X) 16 15 18 16
SH(X) 34.0% 31.9% 38.3% 34.0%

2.3 Previous Methods of Discovering Share-Frequent Itemsets

The characteristic of downward closure cannot be applied for discovering
SH-frequent itemsets, because the subsets of an SH-frequent itemset may be
infrequent. For example, in Table 3, {A, C, E} is SH-frequent, but its subsets {C, E}
and {A, E} are infrequent. The ZP and ZSP algorithms can be known as the variants
of the exhaustive search method. They generate all itemsets to be candidate set except
the local measure values of itemsets are exactly zero [6]. Some algorithms have been
proposed to extract SH-frequent itemsets with infrequent subsets, such as SIP, CAC,
and IAB [4, 5, 6]. However, they do not generate complete SH-frequent itemsets.
Recently, Li et al. first proposed the non-exhaustive search method, Fast Share
Measure (FSM), to discover all SH-frequent itemsets efficiently [12]. FSM employs
the level closure property to decrease the number of candidate itemsets.

Given a transaction database DB and minShare, the characteristic of level closure is
described as follows. For a candidate k-itemsets X, and an integer Level, if lmv(X) +
(lmv(X)/k) × MV × Level < min_lmv, no superset of X with length ≤ k + Level is
SH-frequent, where MV is the maximum measure value among all measure values and
min_lmv = minShare × Tmv(DB). In the case, Level = ML – k, where ML is the
maximum length among all transactions, the level closure property guarantees that no
superset of SH-infrequent if the inequality holds.

Li et al. also developed some more efficient algorithms than FSM to discover all
SH-frequent itemset, including EFSM (Enhanced FSM), SuFSM (Support-counted
FSM) and ShFSM (Share-counted FSM) [13]. EFSM reduces the time complexity of

 A Novel Algorithm for Discovering Complete Share-Frequent Itemsets 555

generating candidate k-itemsets from O(m2k-2) to O(mk), where m is the number of
distinct items. SuFSM and ShFSM are based on EFSM. They add the support constraint
and the share constraint to the critical function, respectively. The performance of
ShFSM is the best among ZSP, FSM, EFSM, SuFSM and ShFSM on some synthetic
datasets [13].

3 Direct Candidate Generation (DCG) Method

The key point of previous methods, including FSM, EFSM, SuFSM and ShFSM for
discovering all SH-frequent itemsets is to eliminate itemset X from candidate set if X
satisfies the inequality CF(X) < min_lmv [12, 13]. Those methods waste computation
time in the join and the prune steps of candidate generation, and generate too many
candidates of SH-frequent itemsets. In comparison with previous methods, this study
proposes a novel algorithm called Direct Candidates Generation (DCG) method to
directly generate a smaller candidate set without the join and the prune steps in each
pass. Without lose of generality, we let the literal set I be a totally order set. That is, for
any i , j ∈ I, either i ≤ j or j ≤ i. We also denote i < j if i ≤ j and i ≠ j.

Definition 3.1 Let the candidate k-itemset X be {i1, i2, …, ik} in the order of literals.
Let iq∈ I be an item. If ik < iq then the (k+1)-superset of X {i1, i2, …, ik, iq} is defined as

the monotone (k+1)-superset of X and is denoted as qi
kX 1+ . For example, Let X = {A,

C, D}. E
kX 1+ = {A, C, D, E}.

Definition 3.2 Let X ⊆ I, the associated set of transactions of X, dbX={ Tq∈DB |
X ⊆ Tq }, is the set of transactions that contain X. The total measure value of dbX is
defined as Tmv(dbX) = ∑ ∑

∈ ∈Xq qpdbT Ti
qp Timv),(.

Let qi
kX 1+ ⊆ I is an arbitrary monotone (k+1)-superset of X. qi

kX 1+ has an associated

set of transactions
qi

kX
db

1+

 = {Tq∈DB | qi
kX 1+ ⊆ Tq}. Clearly,

qi

kX
db

1+

⊆ dbX. For example,

in Table 1, let X = {A, C}, then dbX = {T01, T02, T03} and E
kX

db
1+
 = {T02, T03}.

Theorem 3.1 Given a DB and the minShare, let min_lmv = minShare× Tmv(DB). For
k-itemset X, if Tmv(Xdb) < min_lmv, all supersets of X (including X) are infrequent.

Proof. Let X’ be an arbitrary superset of X with length (k+i), where i ≥ 0. Clearly,
lmv(X’) ≤ Tmv(dbX’) ≤ Tmv(dbX). So, if the inequality Tmv(dbX) < min_lmv holds,
lmv(X’) < min_lmv = minShare× Tmv(DB). That is, SH(X’) = lmv(X’) / Tmv(DB) <
minShare. X’ is infrequent. Q.E.D

By Theorem 3.1, if Tmv(
qi

kX
db

1+

) < min_lmv, qi
kX 1+ and all supersets of qi

kX 1+ are

infrequent; otherwise, qi
kX 1+ is a candidate (k+1)-itemset.

DCG is also a multiple-pass method for finding all SH-frequent itemsets. In the k-th
pass, DCG scans the whole database to count the local measure value of each candidate
k-itemset X and counts the potential maximum share value of each monotone
(k+1)-superset of X. Next, DCG determinates the SH-frequent k-itemset, where their

556 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

local measure values are greater than min_lmv. Then, DCG selects qi
kX 1+ to be a

candidate (k+1)-itemset if the total measure value of
qi

kX
db

1+

 satisfies the inequality

Tmv(
qi

kX
db

1+

) ≥ min_lmv. The pseudo-code of DCG algorithm is as follows.

Algorithm DCG()
Input: (1) DB: a transaction database with counting, (2) minShare
Output: All SH-frequent itemsets
Procedure:
1. C1:=I; // Ck: the set of candidate k-itemsets
2. for k:=1 to h
3. Fk:=φ ; Ck+1:=φ ; Tmv(

qi
kX

db
1+

):=0 for all X in Ck;

4. foreach T∈DB // scan DB
5. if k==1 { count and store tmv(T); }
6. foreach X∈Ck
7. count lmv(X);
8. foreach iq > ik && iq ∈ T
9. Tmv(

qi
kX

db
1+

) += tmv(T);

10. foreach X∈Ck
11. if lmv(X)≥ min_lmv { Fk:= Fk+X; }
12. foreach iq > ik && iq ∈ I

13. if Tmv(
qi

kX
db

1+

)≥ min_lmv { Ck+1:=Ck+1+ qi
kX 1+ ; }

14. if Ck+1==φ exitfor;

15. return F1UF2U…UFk;

In line 5 , DCG calculates the transaction measure value of each transaction and
store it in an array when scanning DB first time. The transaction measure value of each
transaction will be employed in each pass. In lines 8 to 9, DCG accumulates the total
measure value of

qi

kX
db

1+

. From lines 10 to 13, DCG determines which candidate

k-itemsets are SH-frequent and directly generates (k+1)-candidates.

Example 3.1 Consider the sample transaction database as listed in Table 1 and
minShare = 30%. Both Tmv(DB) = 47 and min_lmv = 15 can be calculated easily. In
Fig. 1, each circle represents candidate itemset X and each number inside the circle is
the local measure value of X, lmv(X), such as lmv({A})=12 and lmv({BD}) = 15. To
speed-up counting the total measure value of each monotone (k+1)-superset of each
candidate X, Tmv(

qi

kX
db

1+

), we require an array table to store these values for each X.

The transaction measure value table is listed in the column “Total count” of Table 1.
In the first pass, all items are candidate 1-itemsets. After first scanning DB, we can
obtain all local measure values of candidates and all Tmv(

qiX
db

2

) values, such as

Tmv(CA
db

2}{
) = 26 and Tmv(GC

db
2}{

) = 6. No 1-itemset is SH-frequent and there are

seven monotone 2-supersets, with values greater than min_lmv, in arrays. These
2-itemsets could be SH-frequent as shown in the dark cells of Fig. 1. Therefore, DCG
directly generates the seven 2-itemset candidates {{A, C}, {A, E}, {B, C}, {B, D},

 A Novel Algorithm for Discovering Complete Share-Frequent Itemsets 557

{C, D}, {C, E}, {C, F}}. In the second pass, DCG discovers two SH-frequent
2-itemsets, {{A, C}, {B, D}}, and generates two candidate 3-itemsets, {{A, C, E}, {B,
C, D}}, because lmv({A, C}) = 16, lmv({B, D}) = 15, Tmv(EAC

db
3}{

) = 20 and

Tmv(DBC
db

3}{
) = 21 are all greater than min_lmv. No candidate of C4 can be generated.

Therefore, the process terminates after third scanning DB.

Fig. 1. An example of DCG algorithm

4 Experimental Results

To access the performance of DCG, experiments are conducted to compare its
performance with that of FSM, EFSM, SuFSM and ShFSM on artificial and real
datasets. All experiments were performed on a 1.5 GHz Pentium IV PC with 1.5 GB
of main memory, running Windows XP Professional operating system. All algorithms
were coded in Visual C++ 6.0. Each algorithm employed the hash tree structure to
count the local measure value of each candidate. All SH-frequent itemsets were
output to main memory to eliminate the effect of disk writing.

The artificial datasets were generated by IBM synthetic data generator [18]. To
discover SH-frequent itemsets, each item must include an integer attribute. This study
modifies these datasets with additional parameter m. The notation Tx.Iy.Dz.Nn.Sm
denotes a dataset with five given parameters x, y, z, n and m. The definition of the first
four parameters is the same as those in [3]. The parameter m denotes the measure value
which was randomly generated between 1 and m, and 50% of measure values in the
dataset are set to be 1.

Figures 2 and 3 plot the performance curves of running time associated with these
algorithms over various minShare, applied to T6.I4.D100k.N200.S10 and
T10.I6.D100k.N1000.S10, respectively. Figure 2 uses a logarithmic scale for the y-axis
and the range of minShare is from 0.1% to 1.2%. Figure 2 demonstrates that DCG
performed better than FSM by more than one order of magnitude. DCG had the best
performance, followed by ShFSM. For example, the running time of DCG was only
62%, 21%, 9.8 and 0.4% of those of ShFSM, SuFSM, EFSM and FSM, respectively
with minShare = 0.4%.

In Fig. 3, the range of minShare is from 0.01% to 0.12%. FSM and EFSM were not
illustrated in Fig. 3 because they generated too many candidates to store in main
memory. In minShare ≤ 0.4% scenarios, SuFSM also generated too many candidates to

558 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

run. The running time of DCG was only 59.5% and 16.6% of those of ShFSM and
SuFSM with minShare = 0.06%, respectively.

T6.I4.D100k.N200.S10

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1 1.2

minShare (%)

R
un

ni
ng

 ti
m

e
(s

ec
)

FSM
EFSM
SuFSM
ShFSM
DCG

T10.I6.D100k.N1000.S10

0

100

200

300

400

500

0 0.02 0.04 0.06 0.08 0.1 0.12

minShare (%)

R
un

ni
ng

 ti
m

e
(s

ec
)

SuFSM
ShFSM
DCG

Fig. 2. Comparison of running times Fig. 3. Comparison of running times

To compare the difference of candidate numbers among these five algorithms in
each pass, Table 4 presents the numbers of Ck and Fk in each pass using the dataset
T6.I4.D100k.N200.S10 with minShare = 0.1%. DCG generated the fewest candidates
among the five algorithms. DCG terminated the process at pass 10 and performed best.
ShFSM also terminated the process at pass 10. The others executed the processes to
pass 13. All five algorithms can discover all SH-frequent itemsets, even to those
SH-frequent k-itemsets had no SH-frequent (k-1)-subset. For example, in the pass 5, all
five SH-frequent 5-itemsets have no SH-frequent 4-subset.

Table 4. Comparison of the numbers of candidate sets in each pass

C
k
 F

k
 Method

Pass (k) FSM EFSM SuFSM ShFSM DCG

k=1 200 200 200 200 200 159
k=2 19900 19900 19701 19306 7200 1844
k=3 829547 829547 564324 190607 9805 101
k=4 3290296 3290296 793042 20913 1425 0
k=5 393833 393833 25003 1050 967 5
k=6 26137 26137 11582 518 510 8
k=7 11141 11141 5940 204 203 7
k=8 4426 4426 2797 58 58 1
k ≥ 9 2036 2036 1567 12 12 0

Time(sec) 13610.4 71.55 29.67 10.95 8.83

Figures 4 and 5 compare the scalability of SuFSM, ShFSM and DCG. Figure 4
illustrates the scalability of three algorithms on the transaction numbers of DB using
T6.I4.Dz.N200.S10 with minShare = 0.3%. The range of DB size is between 100k and
1000k. The running times of SuFSM, ShFSM and DCG linearly increase with the
growth of the DB size. Figure 5 presents the scalability of three algorithms on the
maximum measure values of DB using T6.I4.D100k.N200.Sm with minShare = 0.3%.
The x-axis represents the maximum measure values between 10 and 60. The running
time curves of SuFSM, ShFSM and DCG were found to be flat. The impact of the
distinct maximum measure value on these three approaches was insignificant.

 A Novel Algorithm for Discovering Complete Share-Frequent Itemsets 559

BMS-WebView-2 is a real dataset of several months’ click stream data from an
e-commerce web site [17]. This study modifies these datasets with an additional
parameter m. The parameter m denotes the measure value of each item was randomly
generated between 1 and m, and 50% of measure values in the dataset are set to be 1.
Figure 6 plots the running-time curves associated with ShFSM and DCG. The range of
minShare is between 0.2% and 1%. In these distinct minShare scenarios, FSM, EFSM
and SuFSM generated too many candidates to store in main memory. In Fig. 6, when
minShare ≤ 0.6%, the running times of DCG are only between 59.5% (minShare =
0.6%) and 16.6% (minShare = 0.2%) of that of ShFSM.

T6.I4.Dz.N200.S10

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Transactions (k)

R
un

ni
ng

 ti
m

e
(s

ec
)

SuFSM

ShFSM

DCG

T6.I4.D100k.N200.Sm

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

S

R
un

ni
ng

 ti
m

e
(s

ec
)

.

SuFSM

ShFSM

DCG

Fig. 4. Scalability of algorithms Fig. 5. Scalability of algorithms

BMS-WebView-2.S10

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1 1.2

minShare (%)

R
un

ni
ng

 ti
m

e
(s

ec
)

ShFSM

DCG

Fig. 6. Comparison of running times on BMS-WebView-2.S10

5 Conclusions

The share measure has been proposed to overcome the drawbacks of the support
measure. Therefore, developing an efficient approach for discovering complete
SH-frequent itemsets is very valuable. This study proposes the Direct Candidates
Generation (DCG) algorithm to avoid the join and the prune steps in each pass.
Furthermore, DCG significantly reduces the number of candidates and improves the
performance. Experimental results indicate that DCG outperforms all other algorithms
in several artificial datasets. Now, we are investigating the development of superior
algorithms to efficiently accelerate the process of identifying long SH-frequent itemsets.

Acknowledgements

We would like to thank Blue Martini Software, Inc. for providing the BMS datasets.

560 Y.-C. Li, J.-S. Yeh, and C.-C. Chang

References

1. R. C. Agarwal, C. C. Aggarwal, V. V. V. Prasad: A tree projection algorithm for generation
of frequent itemsets. Journal of Parallel and Distributed Computing, 61 (2001) 350-361

2. R. Agrawal, T. Imielinski, A. Swami: Mining association rules between sets of items in
large databases. In: Proc. 1993 ACM SIGMOD Intl. Conf. on Management of Data,
Washington, D.C. (1993) 207-216

3. R. Agrawal, R. Srikant: Fast algorithms for mining association rules. In: Proc. 20th Intl.
Conf. on Very Large Data Bases, Santiago, Chile (1994) 487-499

4. B. Barber, H. J. Hamilton: Algorithms for mining share frequent itemsets containing
infrequent subsets. In: D. A. Zighed, H. J. Komorowski, J. M. Zytkow (eds.): 4th European
Conf. on Principles of Data Mining and Knowledge Discovery. Lecture Notes in Computer
Sciences, Vol. 1910. Springer-Verlag, Berlin Heidelberg New York (2000) 316-324

5. B. Barber, H. J. Hamilton: Parametric algorithm for mining share frequent itemsets. Journal
of Intelligent Information Systems, 16 (2001) 277-293

6. B. Barber, H. J. Hamilton: Extracting share frequent itemsets with infrequent subsets. Data
Mining and Knowledge Discovery, 7 (2003) 153-185.

7. C. L. Carter, H. J. Hamilton, N. Cercone: Share based measures for itemsets. In: H. J.
Komorowski, J. M. Zytkow (eds.): 1st European Conf. on the Principles of Data Mining and
Knowledge Discovery. Lecture Notes in Computer Science, Vol. 1263, Springer-Verlag,
Berlin Heidelberg New York (1997) 14-24

8. R. Chan, Q. Yang, Y. D. Shen: Mining high utility itemsets. In: Proc. 3rd IEEE Intl. Conf. on
Data Mining, Melbourne, FL (2003) 19-26

9. J. Han, J. Pei, Y. Yin, R. Mao: Mining frequent pattern without candidate generation: A
frequent pattern tree approach. Data Mining and Knowledge Discovery, 8 (2004) 53-87

10. R. J. Hilderman, C. L. Carter, H. J. Hamilton, N. Cercone: Mining association rules from
market basket data using share measures and characterized itemsets. Intl. Journal of
Artificial Intelligence Tools, 7 (1998) 189-220

11. M. Kantardzic: Data mining: Concepts, models, methods, and algorithms. John Wiley &
Sons, Inc., New York (2002)

12. Y. C. Li, J. S. Yeh, C. C. Chang: A fast algorithm for mining share-frequent itemsets. In: Y.
Zhang, K. Tanaka, J. X. Yu, etc. (eds.): 7th Asia Pacific Web Conf. Lecture Notes in
Computer Science, Vol. 3399, Springer-Verlag, Berlin Heidelberg New York (2005)
417-428

13. Y. C. Li, J. S. Yeh, C. C. Chang: Efficient algorithms for mining share-frequent itemsets. To
appear in Proc. 11th World Congress of Intl. Fuzzy Systems Association (2005)

14. J. Liu, Y. Pan, K. Wang, J. Han: Mining frequent item sets by opportunistic projection. In:
Proc. 8th ACM-SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, Alberta,
Canada (2002) 229-238

15. J. S. Park, M. S. Chen, P. S. Yu: An effective hash-based algorithm for mining association
rules. In: Proc. 1995 ACM-SIGMOD Intl. Conf. on Management of Data, San Jose, CA
(1995) 175-186

16. K. Wang, S. Zhou, J. Han: Profit mining: From pattern to actions. In: C. S. Jensen, K. G.
Jeffery, J. Pokorný, etc. (eds.): 8th Int. Conf. on Extending Database Technology. Lecture
Notes in Computer Science, Vol. 2287, Springer-Verlag, Berlin Heidelberg New York
(2002) 70-88

17. Z. Zheng, R. Kohavi, L. Mason: Real world performance of association rule algorithm. In:
Proc.7th ACM-SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, San
Francisco, CA (2001) 401-406

18. http://alme1.almaden.ibm.com/software/quest/Resources/datasets/syndata.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

