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Abstract. The value of the itemset share is one way of evaluating the magnitude 
of an itemset. From business perspective, itemset share values reflect more the 
significance of itemsets for mining association rules in a database. The 
Share-counted FSM (ShFSM) algorithm is one of the best algorithms which can 
discover all share-frequent itemsets efficiently. However, ShFSM wastes the 
computation time on the join and the prune steps of candidate generation in each 
pass, and generates too many useless candidates. Therefore, this study proposes 
the Direct Candidates Generation (DCG) algorithm to directly generate 
candidates without the prune and the join steps in each pass. Moreover, the 
number of candidates generated by DCG is less than that by ShFSM. 
Experimental results reveal that the proposed method performs significantly 
better than ShFSM.  

1   Introduction  

Data mining techniques have been developed to find new and potentially useful 
knowledge from data. [11]. Traditional methods for mining association rules are 
based on the support-confidence framework to discover all relationships among items 
(each market product is called an item) from historical transaction databases.  

The support value is applied to measure the importance of itemsets (a group of 
products bought together in a transaction) in a transaction database. It only reflects the 
percentage of transactions in which the itemset sold, but neither reveals the profit, the 
cost nor the real quantity sold of each itemset. For example, in Table 1, the column 
“Count” indicates the sale volume of each item in each transaction. According to the 
support value, {A} appears in four transactions, but its real sale volume is 12.  

Users are usually more interested in knowing which itemsets are bought in sufficient 
numbers to gain a certain net profit or attain a given cost. To reveal such knowledge, 
several issues have been proposed, such as share-confidence framework, profit mining 
and utility itemsets [7, 8, 16]. In 1997, Carter et al. first introduced a share-confidence 
framework [7]. Instead of discovering frequent itemsets, the method with 
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share-confidence framework finds share-frequent (SH-frequent) itemsets. The share 
measure can provide valuable information of itemsets’ net profit or cost, which the 
support measure cannot [6].  

Table 1. Example of a transaction database with counting 

TID Transaction Count Total count 
T01 {A, B, C, D, G, H} {1, 1, 1, 1, 1, 1} 6 
T02 {A, C, E, F} {4, 3, 1, 2} 10 
T03 {A, C, E} {4, 3, 3} 10 
T04 {B, C, D, F} {4, 1, 2, 2} 9 
T05 {A, B, D} {3, 1, 2} 6 
T06 {B, C, D} {3, 2, 1} 6 

An SH-frequent itemset usually includes some infrequent subsets even no frequent 
subset. Obviously, an exhaustive search method can be used to generate all 
SH-frequents, such as the ZP and the ZSP algorithms [4, 6]. However, the exhaustive 
search method is time-consuming and does not work efficiently in a large dataset. Some 
algorithms have been proposed to facilitate the extraction of SH-frequents with 
infrequent subsets, such as SIP, CAC and IAB [4, 5, 6], but they may not discover all 
SH-frequent itemsets. Recently, Li et al. first developed algorithms to swiftly discover 
all SH-frequent itemsets [12, 13]. Among these algorithms ShFSM is the best. In 
contrast to the number of SH-frequent itemsets, the performance bottleneck of ShFSM 
is generating too many candidates in each pass. Accordingly, this work proposes the 
Direct Candidate Generation (DCG) method to further improve the performance of 
ShFSM. Our scheme directly generates candidates in each pass without the join and the 
prune steps. Furthermore, DCG can efficiently lower the number of useless candidates 
and further accelerate the mining process. For simplicity and without loss of generality, 
this study supposes that the measure value of each item in each transaction is a 
non-negative integer.  

The rest of this paper is organized as follows. Section 2 reviews support-confidence 
and share-confidence frameworks. Section 3 explains the proposed Direct Candidate 
Generation (DCG) algorithm for discovering all SH-frequent itemsets. Section 4 
provides experimental results and evaluates the performance of the proposed algorithm. 
Finally, we conclude in Section 5 with a summary of our work. 

2   Review of Support and Share Measures 

2.1   Support-Confidence Framework 

Agrawal et al. first defined the problem of mining association rules [2, 3]. The formal 
definition is as follows. Let I = {i1, i2, …, in} be a set of literals with binary attributes, 
called items. Let X be an itemset, where X ⊆ I. Let the transaction database DB = {T1, 
T2, ..., Tz} be the set of transactions, where each transaction Tq∈DB, Tq ⊆ I, 1 ≤ q ≤ z. 

The notation X⇒ Y presents an association rule, where X ⊆ I, Y ⊆ I and XIY = φ . 

The rule X⇒ Y has support s%, denoted as Sup(XU Y), in the transaction database DB 
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if the itemset XU Y appears in s% of transactions in DB. The confidence of the rule 
X⇒Y, denoted as Conf(X⇒ Y), is c% if the set of transactions containing X in DB 
has c% transactions also containing Y. Thus, Conf(X⇒ Y) = Sup(XU Y)/Sup(X). 
Given the minimum support (minSup) and minimum confidence (minConf) threholds, 
the process of mining association rules is to generate all rules that satisfy the two 
certain constraints, respectively.  

Apriori is a level-wise (including multiple passes) algorithm. In each pass, Apriori 
employs the downward closure property to efficiently identify all frequent k-itemsets 
(itemsets with length k and their supports are greater than or equal to minSup). In fact, 
an arbitrary k-subset of a frequent (k+1)-itemset is also frequent; otherwise, the 
(k+1)-itemset is infrequent. This characteristic is called the downward closure property. 
That is, the itemsets violating the downward closure property will be deleted from the 
set of candidate (k+1)-itemsets. Up to now, there are many algorithms have been 
proposed to rapidly discover the frequent itemsets, including Apriori and subsequent 
Apriori-like algorithms [3, 15], and pattern-growth methods [1, 9, 14]. 

2.2   Share-Confidence Framework 

The support measure does not concern the quantity purchased in a transaction. In real 
circumstances, products may be bought in plural in a transaction. Therefore, the 
support value of an item usually underestimates the actual frequency of product 
purchasing. Information derived from the support value may also be misleading [6]. 
To address this issue, Carter et al. first introduced the share-confidence framework 
[7]. Instead of a binary attribute, each item ip involves a numerical attribute in each 
transaction Tq. The notations and definitions of share measure are described as follows 
[6, 12, 13]. 

The measure value mv(ip, Tq) represents the attribute value of ip in transaction Tq. For 
example, in Table 1, mv(C, T02) = 3 and mv(D, T04) = 2. The transaction measure 
value is the total measure value of a transaction Tp, denoted as tmv(Tp), where tmv(Tp) = 

∑
∈ qp Ti

qp Timv ),( . For example, in Table 1, tmv(T02) = 10 and mv(T04) = 9.  

The total measure value Tmv(DB) represents the total measure value in DB, where 
Tmv(DB) = ∑ ∑

∈ ∈DBT Ti
qp

q qp

Timv ),( . For example, in Table 1, Tmv(DB) = 47. 

Let dbX be a set of transactions that contain itemset X in DB. That is each k-itemset 
X ⊆ I has an associated set of transactions dbX ⊆ DB, where X ⊆ Tq and Tq∈dbX. For 
example, in Table 1, db{AC} = {T01, T02, T03}.  

Let X ⊆ Tq, the itemset measure value of an itemset X in a transaction Tq, denoted as 
imv(X, Tq), is the total measure value of all items of X in Tq. That is, imv(X, Tq) = 

∑
∈⊆ XiTX

qp
pq

Timv
,

),( . For example, in Table 1, imv({AC}, T02) = 7. 

The local measure value of an itemset X in DB, denoted as lmv(X), is the sum of the 
itemset measure values of X in dbx. That is, lmv(X) = ∑

∈ xq dbT
qTXimv ),( . For example, in 

Table 1, lmv({AC}) = imv{{AC}, T01} + imv{{AC}, T02} + imv{{AC}, T03} = 2 + 7 + 
7 = 16. 
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The itemset share value of an itemset X, denoted as SH(X), is the ratio of the local 
measure value of X to the total measure value in DB. That is, SH(X) = 

)(

)(

DBTmv

Xlmv . Given 

a minimum share (minShare) threshold s%, A k-itemset X is share-frequent 
(SH-frequent) if SH(X) ≥  s%; otherwise, X is infrequent.  

Example 2.1 Consider the sample transaction database as shown in Table 1 and 
minShare = 30%. Table 2 lists the local measure value and the share value of each 
1-itemset, where Tmv(DB) = 47. Let X = {B, D}, the local measure value of {B, D} is 
lmv(X) = imv(X, T01) + imv(X, T04) + imv(X, T05) + imv(X, T06) = 2 + 6 + 3 + 4 = 
15. SH(X) = lmv(X)/Tmv(DB)= 15/47 = 0.319 > 30%. Therefore, {B, D} is 
SH-frequent. Table 3 illustrates all SH-frequent itemsets.  

Table 2. Local measure value and itemset share value of each 1-itemset 

Item {A} {B} {C} {D} {E} {F} {G} {H} Total 
lmv(ip) 12 9 10 6 4 4 1 1 47 
SH(ip) 25.5% 19.1% 21.3% 12.8% 8.5% 8.5% 2.1% 2.1% 100% 

Table 3. All SH-frequent itemsets of the sample database 

SH-frequent itemset {A, C} {B, D} {A, C, E} {B, C, D} 
lmv(X) 16 15 18 16 
SH(X) 34.0% 31.9% 38.3% 34.0% 

2.3   Previous Methods of Discovering Share-Frequent Itemsets 

The characteristic of downward closure cannot be applied for discovering 
SH-frequent itemsets, because the subsets of an SH-frequent itemset may be 
infrequent. For example, in Table 3, {A, C, E} is SH-frequent, but its subsets {C, E} 
and {A, E} are infrequent. The ZP and ZSP algorithms can be known as the variants 
of the exhaustive search method. They generate all itemsets to be candidate set except 
the local measure values of itemsets are exactly zero [6]. Some algorithms have been 
proposed to extract SH-frequent itemsets with infrequent subsets, such as SIP, CAC, 
and IAB [4, 5, 6]. However, they do not generate complete SH-frequent itemsets. 
Recently, Li et al. first proposed the non-exhaustive search method, Fast Share 
Measure (FSM), to discover all SH-frequent itemsets efficiently [12]. FSM employs 
the level closure property to decrease the number of candidate itemsets.  

Given a transaction database DB and minShare, the characteristic of level closure is 
described as follows. For a candidate k-itemsets X, and an integer Level, if lmv(X) + 
(lmv(X)/k) × MV × Level < min_lmv, no superset of X with length ≤ k + Level is 
SH-frequent, where MV is the maximum measure value among all measure values and 
min_lmv = minShare × Tmv(DB). In the case, Level = ML – k, where ML is the 
maximum length among all transactions, the level closure property guarantees that no 
superset of SH-infrequent if the inequality holds.  

Li et al. also developed some more efficient algorithms than FSM to discover all 
SH-frequent itemset, including EFSM (Enhanced FSM), SuFSM (Support-counted 
FSM) and ShFSM (Share-counted FSM) [13]. EFSM reduces the time complexity of 
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generating candidate k-itemsets from O(m2k-2) to O(mk), where m is the number of 
distinct items. SuFSM and ShFSM are based on EFSM. They add the support constraint 
and the share constraint to the critical function, respectively. The performance of 
ShFSM is the best among ZSP, FSM, EFSM, SuFSM and ShFSM on some synthetic 
datasets [13]. 

3   Direct Candidate Generation (DCG) Method 

The key point of previous methods, including FSM, EFSM, SuFSM and ShFSM for 
discovering all SH-frequent itemsets is to eliminate itemset X from candidate set if X 
satisfies the inequality CF(X) < min_lmv [12, 13]. Those methods waste computation 
time in the join and the prune steps of candidate generation, and generate too many 
candidates of SH-frequent itemsets. In comparison with previous methods, this study 
proposes a novel algorithm called Direct Candidates Generation (DCG) method to 
directly generate a smaller candidate set without the join and the prune steps in each 
pass. Without lose of generality, we let the literal set I be a totally order set. That is, for 
any i , j ∈ I, either i ≤ j or j ≤ i. We also denote i < j if i ≤ j and i ≠ j. 

Definition 3.1 Let the candidate k-itemset X be {i1, i2, …, ik} in the order of literals. 
Let iq∈ I be an item. If ik < iq then the (k+1)-superset of X {i1, i2, …, ik, iq} is defined as 

the monotone (k+1)-superset of X and is denoted as qi
kX 1+ . For example, Let X = {A, 

C, D}. E
kX 1+  = {A, C, D, E}. 

Definition 3.2 Let X ⊆  I, the associated set of transactions of X, dbX={ Tq∈DB | 
X ⊆ Tq }, is the set of transactions that contain X. The total measure value of dbX is 
defined as Tmv(dbX) = ∑ ∑

∈ ∈Xq qpdbT Ti
qp Timv ),( . 

Let qi
kX 1+  ⊆  I is an arbitrary monotone (k+1)-superset of X. qi

kX 1+  has an associated 

set of transactions 
qi

kX
db

1+

 = {Tq∈DB | qi
kX 1+ ⊆ Tq}. Clearly, 

qi

kX
db

1+

⊆ dbX. For example, 

in Table 1, let X = {A, C}, then dbX = {T01, T02, T03} and E
kX

db
1+
 = {T02, T03}. 

Theorem 3.1 Given a DB and the minShare, let min_lmv = minShare× Tmv(DB). For 
k-itemset X, if Tmv( Xdb ) < min_lmv, all supersets of X (including X) are infrequent. 

Proof. Let X’ be an arbitrary superset of X with length (k+i), where i ≥  0. Clearly, 
lmv(X’) ≤ Tmv(dbX’) ≤ Tmv(dbX). So, if the inequality Tmv(dbX) < min_lmv holds, 
lmv(X’) < min_lmv = minShare× Tmv(DB). That is, SH(X’) = lmv(X’) / Tmv(DB) < 
minShare. X’ is infrequent.            Q.E.D 

By Theorem 3.1, if Tmv(
qi

kX
db

1+

) < min_lmv, qi
kX 1+  and all supersets of qi

kX 1+  are 

infrequent; otherwise, qi
kX 1+  is a candidate (k+1)-itemset. 

DCG is also a multiple-pass method for finding all SH-frequent itemsets. In the k-th 
pass, DCG scans the whole database to count the local measure value of each candidate 
k-itemset X and counts the potential maximum share value of each monotone 
(k+1)-superset of X. Next, DCG determinates the SH-frequent k-itemset, where their 
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local measure values are greater than min_lmv. Then, DCG selects qi
kX 1+  to be a 

candidate (k+1)-itemset if the total measure value of 
qi

kX
db

1+

 satisfies the inequality 

Tmv(
qi

kX
db

1+

) ≥  min_lmv. The pseudo-code of DCG algorithm is as follows. 

Algorithm DCG() 
Input: (1) DB: a transaction database with counting, (2) minShare 
Output: All SH-frequent itemsets 
Procedure: 
1. C1:=I; // Ck: the set of candidate k-itemsets 
2. for k:=1 to h  
3.  Fk:=φ ; Ck+1:=φ ; Tmv(

qi
kX

db
1+

):=0 for all X in Ck; 

4.  foreach T∈DB // scan DB 
5.   if k==1 { count and store tmv(T); } 
6.   foreach X∈Ck 
7.    count lmv(X); 
8.    foreach iq > ik && iq ∈ T  
9.     Tmv(

qi
kX

db
1+

) += tmv(T); 

10.  foreach X∈Ck 
11.   if lmv(X)≥ min_lmv { Fk:= Fk+X; }  
12.   foreach iq > ik && iq ∈ I 

13.    if Tmv(
qi

kX
db

1+

)≥ min_lmv { Ck+1:=Ck+1+ qi
kX 1+ ; } 

14.  if Ck+1==φ  exitfor; 

15. return F1UF2U…UFk;  

In line 5 , DCG calculates the transaction measure value of each transaction and 
store it in an array when scanning DB first time. The transaction measure value of each 
transaction will be employed in each pass. In lines 8 to 9, DCG accumulates the total 
measure value of 

qi

kX
db

1+

. From lines 10 to 13, DCG determines which candidate 

k-itemsets are SH-frequent and directly generates (k+1)-candidates.  

Example 3.1 Consider the sample transaction database as listed in Table 1 and 
minShare = 30%. Both Tmv(DB) = 47 and min_lmv = 15 can be calculated easily. In 
Fig. 1, each circle represents candidate itemset X and each number inside the circle is 
the local measure value of X, lmv(X), such as lmv({A})=12 and lmv({BD}) = 15. To 
speed-up counting the total measure value of each monotone (k+1)-superset of each 
candidate X, Tmv(

qi

kX
db

1+

), we require an array table to store these values for each X. 

The transaction measure value table is listed in the column “Total count” of Table 1. 
In the first pass, all items are candidate 1-itemsets. After first scanning DB, we can 
obtain all local measure values of candidates and all Tmv(

qiX
db

2

) values, such as 

Tmv( CA
db

2}{
) = 26 and Tmv( GC

db
2}{

) = 6. No 1-itemset is SH-frequent and there are 

seven monotone 2-supersets, with values greater than min_lmv, in arrays. These 
2-itemsets could be SH-frequent as shown in the dark cells of Fig. 1. Therefore, DCG 
directly generates the seven 2-itemset candidates {{A, C}, {A, E}, {B, C}, {B, D}, 
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{C, D}, {C, E}, {C, F}}. In the second pass, DCG discovers two SH-frequent 
2-itemsets, {{A, C}, {B, D}}, and generates two candidate 3-itemsets, {{A, C, E}, {B, 
C, D}}, because lmv({A, C}) = 16, lmv({B, D}) = 15, Tmv( EAC

db
3}{

) = 20 and 

Tmv( DBC
db

3}{
) = 21 are all greater than min_lmv. No candidate of C4 can be generated. 

Therefore, the process terminates after third scanning DB.  

 

Fig. 1. An example of DCG algorithm 

4   Experimental Results 

To access the performance of DCG, experiments are conducted to compare its 
performance with that of FSM, EFSM, SuFSM and ShFSM on artificial and real 
datasets. All experiments were performed on a 1.5 GHz Pentium IV PC with 1.5 GB 
of main memory, running Windows XP Professional operating system. All algorithms 
were coded in Visual C++ 6.0. Each algorithm employed the hash tree structure to 
count the local measure value of each candidate. All SH-frequent itemsets were 
output to main memory to eliminate the effect of disk writing.  

The artificial datasets were generated by IBM synthetic data generator [18]. To 
discover SH-frequent itemsets, each item must include an integer attribute. This study 
modifies these datasets with additional parameter m. The notation Tx.Iy.Dz.Nn.Sm 
denotes a dataset with five given parameters x, y, z, n and m. The definition of the first 
four parameters is the same as those in [3]. The parameter m denotes the measure value 
which was randomly generated between 1 and m, and 50% of measure values in the 
dataset are set to be 1.  

Figures 2 and 3 plot the performance curves of running time associated with these 
algorithms over various minShare, applied to T6.I4.D100k.N200.S10 and 
T10.I6.D100k.N1000.S10, respectively. Figure 2 uses a logarithmic scale for the y-axis 
and the range of minShare is from 0.1% to 1.2%. Figure 2 demonstrates that DCG 
performed better than FSM by more than one order of magnitude. DCG had the best 
performance, followed by ShFSM. For example, the running time of DCG was only 
62%, 21%, 9.8 and 0.4% of those of ShFSM, SuFSM, EFSM and FSM, respectively 
with minShare = 0.4%.  

In Fig. 3, the range of minShare is from 0.01% to 0.12%. FSM and EFSM were not 
illustrated in Fig. 3 because they generated too many candidates to store in main 
memory. In minShare ≤ 0.4% scenarios, SuFSM also generated too many candidates to 
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run. The running time of DCG was only 59.5% and 16.6% of those of ShFSM and 
SuFSM with minShare = 0.06%, respectively. 
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Fig. 2. Comparison of running times Fig. 3. Comparison of running times 

To compare the difference of candidate numbers among these five algorithms in 
each pass, Table 4 presents the numbers of Ck and Fk in each pass using the dataset 
T6.I4.D100k.N200.S10 with minShare = 0.1%. DCG generated the fewest candidates 
among the five algorithms. DCG terminated the process at pass 10 and performed best. 
ShFSM also terminated the process at pass 10. The others executed the processes to 
pass 13. All five algorithms can discover all SH-frequent itemsets, even to those 
SH-frequent k-itemsets had no SH-frequent (k-1)-subset. For example, in the pass 5, all 
five SH-frequent 5-itemsets have no SH-frequent 4-subset. 

Table 4. Comparison of the numbers of candidate sets in each pass 

C
k
 F

k
 Method 

Pass (k) FSM EFSM  SuFSM ShFSM DCG  

k=1 200 200 200 200 200 159 
k=2 19900 19900 19701 19306 7200 1844 
k=3 829547 829547 564324 190607 9805 101 
k=4 3290296 3290296 793042 20913 1425 0 
k=5 393833 393833 25003 1050 967 5 
k=6 26137 26137 11582 518 510 8 
k=7 11141 11141 5940 204 203 7 
k=8 4426 4426 2797 58 58 1 
k ≥ 9 2036 2036 1567 12 12 0 

Time(sec) 13610.4 71.55 29.67 10.95 8.83  

Figures 4 and 5 compare the scalability of SuFSM, ShFSM and DCG. Figure 4 
illustrates the scalability of three algorithms on the transaction numbers of DB using 
T6.I4.Dz.N200.S10 with minShare = 0.3%. The range of DB size is between 100k and 
1000k. The running times of SuFSM, ShFSM and DCG linearly increase with the 
growth of the DB size. Figure 5 presents the scalability of three algorithms on the 
maximum measure values of DB using T6.I4.D100k.N200.Sm with minShare = 0.3%. 
The x-axis represents the maximum measure values between 10 and 60. The running 
time curves of SuFSM, ShFSM and DCG were found to be flat. The impact of the 
distinct maximum measure value on these three approaches was insignificant. 
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BMS-WebView-2 is a real dataset of several months’ click stream data from an 
e-commerce web site [17]. This study modifies these datasets with an additional 
parameter m. The parameter m denotes the measure value of each item was randomly 
generated between 1 and m, and 50% of measure values in the dataset are set to be 1. 
Figure 6 plots the running-time curves associated with ShFSM and DCG. The range of 
minShare is between 0.2% and 1%. In these distinct minShare scenarios, FSM, EFSM 
and SuFSM generated too many candidates to store in main memory. In Fig. 6, when 
minShare ≤ 0.6%, the running times of DCG are only between 59.5% (minShare = 
0.6%) and 16.6% (minShare = 0.2%) of that of ShFSM.  
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Fig. 4. Scalability of algorithms Fig. 5. Scalability of algorithms 
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Fig. 6. Comparison of running times on BMS-WebView-2.S10 

5   Conclusions 

The share measure has been proposed to overcome the drawbacks of the support 
measure. Therefore, developing an efficient approach for discovering complete 
SH-frequent itemsets is very valuable. This study proposes the Direct Candidates 
Generation (DCG) algorithm to avoid the join and the prune steps in each pass. 
Furthermore, DCG significantly reduces the number of candidates and improves the 
performance. Experimental results indicate that DCG outperforms all other algorithms 
in several artificial datasets. Now, we are investigating the development of superior 
algorithms to efficiently accelerate the process of identifying long SH-frequent itemsets. 
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